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Abstract-The problem of optimal shape of a single cavity in an infinite 2-D elastic domain is
analyzed. An elastic plane is subjected to a uniform load at infinity. The cavity of the fixed area is
said to be optimal if it provides the minimal energy change between the homogeneous plane and
the plane with the cavity. We show that for the case of shear loading the contour of the optimal
cavity is not smooth but is shaped as a curved quadrilateral. The shape is specified in terms of
conformal mapping coefficients, and explicit analytical representations for components of the dipole
tensor associated with the cavity are employed. We also find the exact values of angles at the
corners of the optimal contour. The applications include the problems of optimal design for dilute
composites. © 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

1.1. The problem 01' shape optimization
We consider the problem of maximization of the stiffness of an elastic plane weakened

by a cavity of the fixed area and loaded by a uniform stress field (J at infinity. This problem
is equivalent to minimizing the energy decrease stored in the medium. The total elastic
energy stored in the plane is infinite, nevertheless, the energy decrease is finite. We constrain
the cavity to occupy a simply-connected domain,

One would, perhaps, regard the problem of the optimal shape of a single cavity in an
infinite plane to be a classical one. Indeed, it is known that the "best" cavity in a hydrostatic
stress has a circular shape, and that the "best" cavities in the stress field which has
eigenvalues of the same sign are ellipses. However, when the tensor, prescribed at infinity,
has the eigenvalues ofdifferent sign, the shape ofcavity (of fixed area) minimizing the energy
increment seems to be unknown; it is appropriate to refer to the numerical experiments that
have been carried out by Cherkaev and Vigdergauz (1986), where some characteristic
features of the optimal shape were discussed.

The problem on optimal shape of solids has been initiated by Prager (1968) who has
derived sufficient conditions of optimality. The shape of optimal cavities and the optimal
properties of composites have been studied for a uniform hydrostatic loading and a biaxial
loading with the principal stresses of the same sign (see Cherepanov, ]974; Vigdergauz,
1976; Vigdergauz, 1989). The optimal shapes of several cavities have been described by
Vigdergauz (1988).

It is impossible to list in this short paper numerous publications dealing with structural
optimization and, in particular, shape optimization. We would like to mention the mono
graphs of Sokolowski and Zolesio (1992), Haug et al. (1986), Pironneau (1984) and Bendsoe
(1995), and the review paper of Rozvany et al. (1994), that include mathematical and
numerical analyses of shape sensitivity associated with elliptic boundary value problems,
The existence of a solution of an optimal control formulation for boundary value problems
for the Laplacian was analyzed by Chenais (1975). We are not aware of the analogous
general result for the Lame system. We refer the reader to the recent volume of Olhoff and

t Author to whom correspondence should be addressed.
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Rozvany (1995) where the state of the art in structural optimization is fairly presented.
Structural optimization through' the FEM was discussed by Schnack et al. (1986).

In this paper, the main attention is paid to the case of pure shear loading. We show
that the optimal cavity is a curved quadrilateral, and the angle near the corners is equal to
the critical Carothers (1912) value ~ 102.6.

We start with the formulation of the optimization problem. Then we discuss the
necessary conditions of optimality and applications to models of dilute composites. Next
we present a minimization algorithm based on the concept of the dipole matrix cor
responding to the remote field associated with finite cavities in an elastic plane. It enables
one to produce explicit representation of the energy increment via the dipole coefficients.
We represent the exterior of a cavity as a conformal image of the interior of the unit disc.
Then we express the dipole matrix entries through the coefficients of the truncated Taylor
expansion of that conformal map. Finally, we minimize the energy increment (given by the
dipole tensor) over all possible values of the coefficients of the Taylor expansion. The
resulting sequence of cavities exhibited a numerical convergence to a limiting shape of a
quadrilateral described above.

Next we apply the complex variable technique closely following the method of Chere
panov (1974). We USI~ optimality conditions and KolosovMuskhelishviIi potentials in
conjunction with conformal mapping representation of the unknown domain in order to
set up the integral equation for the unknown conformal mapping. We reduce it to a finite
dimensional system of linear equations by expanding everything into truncated power
series. Solving the linear system, we recover the same numbers obtained by the direct
minimization procedure described above.

Finally, we study the local behaviour of elastic fields near the corners of the cavity
contour using the asymptotic expansion of the solution near the corner and the optimality
conditions; in this way we find the exact value of the angle at the corner. The algorithms
employed in this work can be effectively applied for any uniform load.

1.2. Link with composite malerials
If one removes any restriction on the topology of the structure (number of holes) then

one is led to consider composites-limiting materials with an infinite number of infinitely
small holes (Kohn and Strang, 1986). The optimization problem for composites turned out
to be easier to solve analyticaly (see, for example, the papers by Gibiansky and Cherkaev,
1984; Gibiansky and Cherkaev, 1986; Kohn and Strang, 1986; Milton, 1986; Bendsoe,
1995; Grabovsky and Kohn. 1995; the recent review paper by Rozvany et al., 1994 has a
number of additional references). These analytical solutions showed that in our setting the
elliptical hole is a minimizer (one of the many) of the energy increment if the principal
stresses have the same sign, even when the topology is unrestricted. However. if the principal
stresses have opposite sign then a genuine composite, such as a second rank laminate, must
be a minimizer. The "optimal" shape that we have found in our paper has a significantly
higher energy increment than the optimal composite. Yet, our shape is the best if one
restricts the number of holes to one.

2. PROBLEM FORMULATION

[n this section we present the boundary value problem, give the appropriate variational
formulation and discuss the optimality criteria.

2.1. Elasticity problem
First. we consider the boundary value problem in a domain with a single finite cavity

C. The elastic material is characterized by the Lame constants fJ. and A. On DC we impose
free-traction boundary conditions, and at infinity the uniform shear stress field is specified.
The displacement field u satisfies the following boundary value problem:
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(2.1 )

where 0' is the stress tensor, Il is the strain tensor, ((; = {((ji/A'; is the fourth order tensor of
elastic constants, (:) denotes contraction by two indices, :!JI' = {(x,y): X2+y2 < p2} and p
is sufficiently large, nj are components of the unit outward normal.

For an isotropic material which we consider here, the above system is reduced to the
Lame equations:

2'(u: x) := ,uL1u +V + ,u)VV' u = 0, X E :UI'\G,

(2.2)

Following variational technique (see Sokolowski and Zolesio, 1992), we define the energy
space W(;J;)p) for the boundary value problem (2.2) and introduce the norm:

(2.3)

The elastic energy of the region which is bounded by a;up can be evaluated as

(2.4)

We remark that it can be represented as a difference between the potential energy and the
work of external forces.

The solution of the boundary value problem (2.2) minimizes the energy (2.4) :

(2.5)

We define the increment of energy as a difference between two functionals associated with
full energy in the homogeneous disk ,Up =~ x: II x < p} and in the disk 181' weakened by
the cavity G:

b We; ,n; = lim (o'(u; ,U,\G) - I,"(u" ; ;18,)}
I)""

:!/ip = {x: I'xll < pi. (2.6)

Here (J,j, [;'(; are components of the stress and the strain tensors in the homogeneous disk,
and (Jij, e,i are the stress and strain in the disk .1dp with the cavity G.t

2.2. Optimization problem
The main objective is to find the shape of the cavity which provides the minimal

absolute value of the energy increment. Note that the energy increment is negative for the
disk with a cavity. The constraints of the fixed area and boundness of the domain are
imposed.

t '-Iote that the boundary value problem is solved in the bounded domain ,J#,,\G.
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We formulate the optimization problem in the following form: find a bounded domain
G* of a fixed area such that

(5W(;.:uX. = max(5W = max lim {ming((!~, ;!J8p\G)-ming((!~ ;/JlJrJ}' (2.7)
I} G (1 p-+(f. 1.J - u·

where the maximum is taken over all simply connected bounded domains of a given area.
Let us now discuss the set of admissible minimizers. An infinite plane with an arbitrary
single cavity can be mapped to the exterior of the unit disc by the conformal mapping
represented in the form

(2.8)

where Rand Cn are constant coefficients.
The constraint of the fixed area can be written via the conformal mapping coefficients:

S(G) = nR 2 (I JI nlCnlZ) = const. (2.9)

We determine the set of admissible cavities by their coefficients Rand Cn of conformal
mapping to the unit disc. The optimization problem becomes:

Find the set of coefficients Rand Cn [see (2.8)] restricted by (2.9) that lead to a cavity
which minimizes (2.7).

This formulation corresponds to our goal to find an optimal single-connected cavity, rather
than an array of smaller cavities of the same area.

2.3. Representation of the energy increment
It is convenient to present the energy increment via "polarization" tensor (see Zorin

et al., 1988; Babich et al., 1989) for precise proof of this representation):

(2.10)

where r!Jijkh i,j, k, I = I, 2 is the 4-th order "polarization" tensor (also see P61ya and Szego,
1951 ; Walpole, 1966). It has the same symmetry properties as the Hooke's tensor 'fJ iikl .

Namely,

and the number of independent elements is six for 2-D geometry. The "polarization" tensor
characterizes the remote displacement field associated with the presence of cavity G. If
we can specify the constant-strain fields corresponding to the following displacements
y(l> = (XI. 0), y(2) = (0, Xz), y(3) = 2- I

/
Z (X2, Xl) (biaxial tensile and shear loading at infinity)

then the displacement fields in the region [RZ\G admit the following representation

uri) = V(I)+W(I),

and at infinity the "polarization" fields admit the following asymptotic expansions :t

t Repeated indices are regarded to be the indices of summation.
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W(2) = (PJ22IlmTIlI·IlI)+O(IXI_2),
f3P 22nm T,12,m

(
r?J T )W(3) =)2 ',.1211111 Ill.m +O(lxl-2),
f!J 1211m T1l2.1lI
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where T(x) is Somigliana tensor, and TIJ 1 and TU .2 denote the derivatives of the component
IJ with respect to XI or X 2, respectively,

T(x) = q

1 1 2xf
- K In(xi +xi) +--~----:;-

Xi +xi

2X I X2

xf+x~

The P6lya-Szego tensor 11911~/,k,/= 1 (Zorin et al., 1988) characterizes the morphology of the
cavity and elastic constants of the materiaL The tensor !?J depends on coefficients R, CIl and
elastic constants {l, Aonly:

(2.11 )

To obtain explicit approximate formulae for the tensor f!J! we consider truncation of the
expansion (2.8), and keep the first N terms of the series, It allows one to reduce the problem
to the solution of the system of N linear algebraic equations.

For example, when N = 3 we obtain :t

where

L ...
,0/11111=-0+--

1
- ,

K- (K_I)2

L ...

- .:=.
,0/11122 = 0- --

(K- 1)2

A
,0/11112 = -8+-.--

1
,

K

A
,0/12212 = 8+----

1
'

K-

o = ~~(C3) + I. L = 4 [Re(C[) + Re(C3 CI)],
l--1c31 2 . l-1c31 2 1-lc31 2

:2 = 2+41 c21 2+61c31 2+21c11 2L±£:.::f + 4 Re(dc
3),

I-1c31 2 1-1c31 2

8 = _!~~..~.3.L A = 2 [_!~(Ctl +!~(C3.0]J
I 1('31 2 ' 1-1c31 2 I-It,1 2 '

Y = ~.~lL3) -1.
I -- 1c,I 2

Thus, the mathematical formulation of the optimal problem reduces to the maximization
problem for the function of N variables:

t Formulae for arbitrary N were published in Movchan and Serkov (1997).
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max. (e::JP:e).
(,!,n= 1.. /1,;

arcaf(;1 is fixed

(2.12)

2.4. Necessary conditions a/optimality
The stationarity conditions for the optimal boundary 3G can be derived using the

classical variational scheme (see Courant and Hilbert, 1962). This condition states that the
energy density must be constant along the boundary aGo For the case of a cavity with zero
tractions specified on the boundary, the theorem implies that the only non-zero component
of stress all = (1: t (8) t must be of a constant absolute value on the cavity contour, where t
denotes the unit tangent to the contour.

la,,1 = c = canst on an optimal boundary. (2.13)

Applying this condition to our formulation, where a pure shear is prescribed at infinity, we
observe that it is impossible to satisfy (2.13), assuming all = const.

To resolve this contradiction we have to assume that a" is piece-wise constant, taking
values c and - C. The points of discontinuity of a" must correspond to irregularities on the
boundary.t Finally, we conclude that an optimal cavity is necessarily bounded by a non
smooth curve.

This observation has been made in the paper by Cherkaev and Vigdergauz (1986),
where an optimal shape that has been found numerically looks like a rectangle. In Section
6 below we will compute the angle at the corners using asymptotic analysis.

2.5. Related optimal composites
One possible approach to the calculation of the optimal energy of the body with

cavities is the following. Consider a periodic structure with cavities, which is characterized
by the volume fraction c and by the shape of cavities. The effective compliance tensor S*(c)
of such a structure can be evaluated and we can bound the effective shear and bulk moduli
independently of the cavities shape. The bounds (introduced in the papers by Gibiansky
and Cherkaev, 1984; Milton. 1990) are proved to be exact, and they correspond to the
mentioned "second rank matrix laminates". Suppose that the optimal composite with a
small volume fraction c « I of cavities occupies the volume A and has a uniform average
stress field a due to an external loading. The total volume of the cavities is equal to C = cA.
The energy change associated with the cavity can be computed as

(j':'V (a: ~": S*(c) I :a) cA.
oc ,.~ [)

(2.14)

Using the explicit formula for the energy of the optimal composite derived by Gibiansky
and Cherkaev (1984) we can compute the increment:

(2.15)

where r = -(2p+;.)/(4p(iL+fl», i. and fl are the Lame elastic moduli, and ai' a2 are
principal stresses.

It should be emphasized that this approach does not pose any restrictions to the
connectness of the cavities, and it turns out that the optimal bounds are achieved on the
second rank laminates. Therefore, we could expect that the cost of the optimal problem
will be greater when an additional restriction, single-connectness of cavities is imposed.

t Smooth boundary components correspond to a continuous behaviour of (JU'
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3. MINIMIZATION TECHNIQUE

This optimization problem can be reduced to minimization of a function of several
variables. The unknown variables are the coefficients of the conformal mapping subject to
the restriction 1cn l < 1!/~ according to (2.9).

Our purpose is to find the set of conformal mapping coefficients {cn } minimizing the
absolute value of the energy increment (2.10). In other words our problem reduces to
multi-dimensional minimization of a function f of 2N variables (the conformal mapping
coefficients are complex).

To do this we use the downhill simplex method [see Numerical Recipes in FORTRAN
(1992) and Appendix for more details].

Our calculation confirms that the optimal construction for uniform loading (0'1 J = O'n)

is a circular cavity and the optimal construction for uniaxial loading is a crack oriented
along the loading line. For the case of composition of two uniaxial loadings of the same
sign. the optimal shape will be an ellipse oriented along the direction corresponding to the
maximal principal stress and having the following parameters (Vigdergauz, 1988) :

" [~(a-h)] a O'JI
w(:;j=R :;+····.········h> ' 1= •

(a+:;) ) 0'21
(3.16)

where a and b are semi-axes of the ellipse, and O'IJ. O'n are principal stresses of the same
sIgn.

The energy increment associated with the optimal elliptical cavity of the unit area can
be estimated as (Gibiansky and Cherkaev, 1984)

(3.17)

The properties of the optimal field for (0'10'1 ~ 0) reduce to the constant dilatation (or
constant first invariant of the stress tensor) in the exterior domain and the constant
tangential stress on the cavity boundary. In the next section we describe our results for the
remaining case when O'j0'1 < O.

4. THE MAIN RESULT: THE OPTIMAL SHAPE OF THE CAVITY

In this section we use the complex variable technique to compute the shape of the
optimal cavity that gives minimum for the absolute value of the energy increment in the
state of shear loading applied at infinity.

First. we apply the minimization procedure referred to Section 3 and present numerical
values of the coefficients of the conformal mapping function. Then we use this mapping
function and solve the direct elasticity problem for an optimal domain. Finally. the analysis
of the inverse problem is presented: we seek the shape of the cavity that provides piece
wise constant 0'" on the cavity contour and show the agreement with the results of the
optimization procedure of Section 3.

4.1. Optimization 01 the shape bv the direct method
Now consider the cavity under the shear loading. The optimal bound for the energy

increment is well known (see, for example, Gibiansky and Cherkaev, 1984). It corresponds
to the multiply connected laminated composites:

(4.1 )

For example, we obtain that the absolute value of the energy increment for a circular cavity
is two times greater than the optimal one (4.1). Our aim is to find the geometry of the
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Fig. \. The shape of the optimal domain.

region, which is specified by a smaller energy change than the circular cavity and which is
the best among simply-connected domains.

Using the exact representation for the energy increment (2.10), (2.11) and the formulae
below (2.11), together with the minimization procedure, we find in the case of N = 3

(4.2)

Here the constant R is chosen in such a way that the cavity has a unit area.
Increasing the number of terms in (2.8) and taking into account 7, II, 15 and 19 terms

correspondingly, we calculate that non-zero conformal mapping coefficients e" for the
optimal domain (see Fig. I) have the following approximate values:

The energy increment for such a domain can be specified as

(4.3)

where the coefficient .:'£ is given in Table 2 as a function of the number N of conformal
mapping coefficients.

For a circular cavity under pure shear the coefficient .ff in formula (4.3) is equal to
four, while the absolute minimum value is two, as evidenced by (4.1).

Table I. Coefficients of the conformal mapping obtained by the optimization procedure

Coefficients N= 19 N= 15 N= II N=7 iV = 3

('3 0.14445 0.14420 0.14372 0.14251 0.13814
('1 0.01699 0.01683 0.01652 0.01575
ell 0.00552 0.00539 0.00513
C l 5 0.00250 0.00239
C l 9 0.00133
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Table 2. The dependence of oX" on the number of coefficients
in the conformal mapping series
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The number of coefficients N Coefficient oX'

3 3.72792
7 3.71725

I I 3.71532
15 3.71473
19 3.71449

We can see (Fig. I) that by increasing the number of coefficients the optimal domain
approaches what looks like a square.

Note that an interesting case arises for non-pure shear. We find that the optimal cavity
is close to a rectangular one with the sides ratio given in Fig. 2. The ratio of the energy
increment and the optimal energy (4.1) is presented in Fig. 3. We see that simply connected
inclusions (holes) stop being optimal when 0')0'2 < O.

4.2. Properties of the optimal hole
In this section we use Kolosov-Muskhelishvili potentials ¢ and 1/1 to represent elastic

fields in the exterior of the hole (Muskhelishvili, 1953). The displacement vector lUI, uJ is
given by

(4.4)

where <I> = ({/. The associated stress 0' = 'fi:B is given by

Gil +0'22 = 4 Re<l>(z),

0'22-0'11 +2iO'12 = 2(z<l>'(z)+'P(z)), (4.5)

where'P = 1/1'.

0.6

0.4

0.2 IJ n 00
0.80.60.40.2o_0.8 _0.6 _0.4 _0.2

o'--_.....l-__L__-'--_--'-_---'I....-_-'-_--'-__'--_-'-_..J
-1

0.8

0.6..
J:l

0.4

0.2

~1'--_o...J.-8--_o....6--_o--'-.4--_o-'-.2-..;;:w0..:--0...L..2--0.L...4----'0.-6--0...L.8----.J

8_1/8_2

Fig. 2. Geometry of the optimal cavity as the function of applied stresses.
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Fig. 3. The normalized energy change versus applied stress.

For the conformal image of the unit disk under the mapping w(~) given by (2.8) with
coefficients from Table I the representation for complex potentials can be obtained from
the analysis of the KolosovMuskhelishvili integral equation:

I i rp((J') I I' w((J')rp'(d) . "
2rriJ ;=¢ d(J' + 2niT(~(()(~'-~) d(J' - W 12 Ri; = 0, (4.6)

where }' is the unit circle. Omitting technical calculations we write the series representation
for the complex potential (p(~)

\'

(p(() = L /3",~"'. I~!:( L
nl ",c I

where the coefficients r;", solve the linear system:

;''y- -iii I

f3",- L (!\'",,, Inp"-i(J'1'1 R(),,,1 = 0, m = I,N,
" I

where

(4.7)

Note, that in our particular case the symmetry conditions yield that all non-zero conformal
mapping coefficients have indices 4n - I, n = 1,2,3, ... They correspond to non-zero
coefficients /34,,+ 10 n = 1,2,3.... , and all remaining coefficients vanish.

The complex potentialljJ(~) admits the representation:

(4.8)

Note that the complex potentialljJ(() has only a simple pole at the origin [look at the first
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term in representation (4.8)]. At the same time the third term in (4.8) compensates the
singular part from the second term, resulting in t/J having the pole of order one only.

For example, for N = 3 we obtain

(4.9)

Taking into account the representation for stress components via the complex potentials:

(4.10)

we calculate the hydrostatic {(J II + (Jd and devia toric {( (J22 - (J II)" +4(JT 2} parts of the stress
tensor. In Figs 4--6 the first invariant. the deviatoric part and the energy density are
presented for the domain described by (4.2).

Using (4.7) and (4.8) we calculate the tangential stress (J1l on the boundary for a
different number of terms in the conformal mapping function (Table I). The results are
presented in Fig. 7 for N= 7, 11, 15, 19. It is possible to see that the modulus of the
tangential stress is constant along the contour except in the small neighbourhood of corners,
where it vanishes, and the diameter of this neighbourhood vanishes as we increase N. This
observation confirms that the necessary condition of optimality (2.13) is satisfied for our
domain under pure shear.

Now we are going to look at the corners of our optimal hole. The Christoffel Schwartz
integral (Savin, 1961)

~JJD

2JJD

100

000

-1.00

-2.00

v.DO

-l.DO v.DO ~. D -LDD OJJO 1.00 2JJO ~JJD lJJO

Fig. 4. The distribution of the energy density for the optimal domain.
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3DD

2DD

1 DO

ODD

-l.DD

-2.00

-".00

-~.ao ->!.OO -1.00 ODD 1. 0 2DD 3Da U]D

Fig. 5. The distribution of the first invariant of the stress tensor for the optimal domain.

Fig. 6. The distribution of the deviatoric part of the stress tensor for the optimal domain.

= R G+0.16667 (3 +0.0 1786e +0.00568( II +0.00260( IS +...)

specifies the mapping of the unit disk to the exterior of a square.
The slightly modified conformal mapping
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N=15 N=19
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1[1
5

=1 0 ~I 0
rt)

-5 -5

-10 -10
0 2 4 6 0 2 4 6

Fig. 7. The tangential stress on the boundary.

Beta = 102.6 Beta = 90

2

<
2

0 0

-1 -1

-2 -2

-3 -3
-2 0 2 -2 0 2

Bela = 135 Beta =45

2

0
2

0 0

-1 -1

-2 -2

-3 -3
-2 0 2 -2 0 2

Fig. 8. The regions obtained by the conformal mapping.

i
~ (t4 - I)"

W(~) = R - :;--dt,
1 t"

(X = 1- f3n I (4. I I)

where f3 is different from n/2, corresponds to a transformation of the unit disk to a symmetric
domain with the angle f3 near the corners (see Fig. 8). The opening angle near the vertex of
the point ~ = I can be calculated as
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Fig. 9. The shape of domainb with piecewise constant tangential stresses on the boundary.

The remaining three angles (near the points ~ = i, - 1, - i) have the same values. Changing
f3 we can find the conformal mapping function which will be in good agreement with the
results of the optimization procedure. Ifwe choose f3* = 102.6° then (4.11) can be rewritten
in the form

which agrees with Table I. It suggests that the quantity 13* is the critical angle in the
Carothers problem (Sternberg and Koiter, 1958) (more detailed discussion will be presented
in Section 6, where we will show that this is not an accidental agreement).

5. THE SOLUTION OF THE INVERSE PROBLEM

The objective of this section is to solve an inverse problem: to find the shape of the
quadrilateral G from the condition (J1l = C or ~ c on the boundary. Here we do not refer
to the energy evaluation. However, we demonstrate that the results of two approaches
coincide.

We start with the Kolosov-Muskhelishvili representation of the boundary condition

for complex potentials qJ and ljJ

qJ(Z) +zqJ'(z) +ljJ(z) = 0, zEcG.

Under the pure shear loading

qJ(Z) ---> 0, Izi ---> CfJ

ljJ(z) ---> i(J12Z, Izi ---> CfJ.

(5.1)
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After mapping the exterior of G onto the interior of the unit disk by the conformal mapping
z = we,;) we can rewrite the integral equation (4.6) for the potential cp

" I +w( a)<i>(0') . vcp(C)+-----------da-/a RI;, = 0- 2ni a _ ~ 12 '. (5.2)

where <D(a) = [cp'(a)jw'(a)] and w(a) is the conformal mapping function. The boundary of
unit disk is denoted by}'.

Now we can apply the condition of the piece wise constant tangential stresses on the
boundary. The I, i, - 1, i in the ~-plane map to the corners of the domain G in z-plane.
So conditions (2.13) can be rewritten as

all =, 4 Re (P' (z) = 4 Re <D(,;) = ±4A, z E aG, (5.3)

where c = 4A is an unknown constant. The unit circle 1';1 = 1 is the image of the boundary,
therefore:

Re <D(e")

A.

-A.

'i.E (o~) u(n ~~). '2 ' 2

(n ) (3n \)'l.Ei,n u2,2n

(5.4)

Using the Schwartz formula that recovers the holomorphic function in the unit disk by the
values of its real part on the boundary, we obtain

2 1"2
<D(¢) = Ailn -----':..- i~l:S; 1.

n 1+(
(5.5)

Therefore, expression (5.5) is the explicit representation for the complex potential <D(~)

satisfying the condition (2.13).
Take the derivative of (5.2), and use the identity <D(a) = 2Req-,(0')-<D(a) and the

expression for the derivative of the Cauchy integral. The integral equation (5.2) reduces to

Y . ,. y I" w(a) Re<D(a) I tf' w(a)<D(a) I z<D«()w (()+.il) Y 7 da- :.,--: --.--:--,-dO' = -Rdev(1··.
nz]' (0'-';-)- ~7fl (17-~)- 2

(5.6)

where dev(1 = a 22 -all +2ia I2'

Using the expression for the real part of the potential <D(O (5.4) and formulae for the
derivatives of the Cauchy integral, we can represent the integrals on the left in the following
way:

1 ~. w(a)<D(O') d
2

. - 7 dO' = d Y {(J)(~)q-,(O}
1[/. (17-1;,)' I;,

and
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Table 3. Coefficients of conformal mapping obtained as the solution of the inverse problem

N= 100 N= 19 N= IS N= 11 N=7 N=3
._..~"_._-

c~ 0.14484 0.13940 0.13759 0.13448 0.12825 O.lllil
c, 0.01727 0.01511 0.01437 0.01306 0.01034

ell 0.00575 0.00435 0.00385 0.00288
Cl 5 O.OO27i! 0.00164 0.00119
CJ9 0.00152 0.00061

I
~' w(a) II w(a) ) 4iAw(l)+ da - '---da =---
I (a-~)2_i(a-02 n(~4_1)

A (I' w'(a) i~ I o/(a) I-' w'(a) d II w'(a) d )+ _.- -~da- ---vda+ -- a-- -- a .
2ni I a-~ I a-C:; -I a-~ia-~

After some lengthy but simple calculations using the symmetry

wU) = iw(l), w( - I) = - w(l), w( - i) = iw(l),

and the Cauchy formula for the holomorphic function in the unit disk we obtain the integral
equation for the unknown function w(~) :

8i ( R) 2 Ii w'(a)
_····_-(~w(~)-w(l))-2 w'(~)+ --~ +-: --da
n(l-~4) ~L nl la-~

2 I-i w'(a) I+- .. --da = -Rdevax
,

ni .1 a-~ 2A '
(5.7)

where the integrals are taken over the quarter arcs of the unit circle located in the first and
third quadrants respectively.

Now we represent the conformal mapping function w by the Laurent expansion about
the origin:

W(C)=R(~+C C,3+c e+c ,"II+ C ,1:15+ ... )... ~ 3 .. 7.. I I .., 15'> (5.8)

Integrands in (5.7) can be expanded in a series of different powers of ~: [o/(a)/(a-~)]=
:E;;C~o [w'(a)/a"+ 1] ~". The function ~w(~)/(I- ~4) can be expressed as the Taylor series as
well. After integrationt of each term of the series separately and collecting the coefficients
near the same powers of ~ we obtain the following linear system ofequations for coefficients
c4m-.j,m= I ... N:

tv 2(4m I) IV 2I -'-'--""- C4m- I -4 I C4m·-1 + 2--'1' = 0, n = I ... N. (5.9)
m=12(m n)-I m~II+1 n+

In Table 3 we show the values of conformal mapping coefficients em for different Nand
note that those data are consistent with Table I.

t The path of integration can be split into two parts: along real axis from 1-0 and along imaginary axis from
oto i for the first integral and from - 1-0 plus from 0 to - i for the second integral.
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The next section is devoted to investigation of the domain boundary near the corner.
We show that the corner angle is equal to the critical Carothers value (see Sternberg and
Koiter, 1958; Markenscoff, 1994).

6. THE ASYMPTOTIC EXPA:-JSION OF THE OPTIMAL SOLUTION NEAR THE CORNERS

The results of the previous section lead to sharp corners on the boundary, provided
that we keep all the terms of the series expansion of the conformal mapping. Any finite
series corresponds to an analytical boundary of the cavity. Thus, we need a different
technique to deal with the fi.elds near the assumed corners on the boundary of the optimal
cavity and we need to demonstrate that the necessary conditions are satisfied almost
everywhere.

Consider the infinite plane with the corner point and the opening angle close to n/2.
Such situations can explain the behaviour of the conformal mapping function (J)(~) near
the corners. The components of the stress field in polar coordinates associated with the
corner point can be represented via Airy stress function cD(r, 0) (Muskhelishvili, 1953) :

I i3 1 cD 1 DcD--- + ----
r ar DO r2 ao . (6.1 )

The solution of equilibrium equations in the infinite plane with corner point can be char
acterized by Airy function of the following structure (Williams, 1952) :

where the eigenvalues Al are uniquely defined by the corner opening and boundary
conditions. For the case of homogeneous traction boundary conditions they can be cal
culated as the roots of the equation

sin 2:>:A = ± A sin 2:>:, (6.3)

where 2n - 2a is the corner opening. We are interested in the solutions A of (6.3) that lie in
(0,1]. For the corner openings from the interval (0, n) (aE(n/2, n)) there are at most three
solutions Al < A2 ~ A3 = I in interval (0, I]. For detailed analysis of the corresponding
eigenvalue problem we refer to Karp and Karal (1962). t

The Air function corresponding to the first eigenvalue has the form

(Ii A.I { cos(A I + I)a }cD . - r I cos(A I + 1)0- -------cos(A[ -1)0
cos (A I - I)a

and satisfies the free-traction boundary conditions on the edges of the corner (0 = ±:>:).
The corresponding displacement field in the polar coordinate system can be represented as

where

[

. (K-AI)cos(AI+I):>: j
CO.. S(AI + 1)0+ :--.------..--.------- ----.--.-COS(A. 1-1).0(AI + I) cos(A, - l)a

Ull) - r"l
. (K+Adcos(A1+1):>:. '

-smeAl + I)O+------------sm(AI -1)0
(A I + 1) cos(A I - I)a

(6.4)

t For example, when rx = (3ni4) corresponding to opening 90--. there are three real eigenvalues AI = 0.54448.
A, = 0.90853 and A, = 1 in the interval (0. II.
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;, +3/1
1\ =-~--..-- .

..1.+11

These vectors describe the symmetric part of the displacement field. In other words the
displacement component u, is an even function and the displacement component U/I is an
odd function of () :

and the corresponding displacement field in the polar coordinate system has a form

r

. . (I\-A 1 )sin(A 2 +])(1. . .
5111 (A,. + I){} + -.------~----:-.------ --- sm(A, - ] J.O.-- (A, + I) sll1(A, -- I)et -

U,21 ~ r l , _.

(I( + A,) sin (A, + 1):1.
cos(!\:, + I ){}-- A - 'A- ] cos(A 1 - llO

(1\2 + I) Sll1( 2 -- )(1.

(6.5)

and represents a skew-symmetric field (u, is odd and Uo is even).
Our interest is in the displacement field corresponding to the second eigenvalue A2

(skew-symmetric field). Only this field will occur in the vicinity of the corner under the
shear loading at infinity because of the symmetry of our problem. The displacement field
(6.5) produces singularity at the vertex of corner and the non-zero radial stress component
on the boundary

(6.6)

Our intention is to find the situation when the singularity vanishes. We note that the third
eigenvalue A, ] produces zero stress field. The free-traction conditions lead to hi' h2• h"
h4 being equal to zero in (6.2). The displacement field corresponding to this situation is the
rigid body rotation field:

(6.7)

It is similar to the situation which occurs in the problem of the optimal cavity. There is no
singularity in the vertex of the corner from inside. From outside, if we apply the external
stress field (shear loading) that does not vanish at infinity

a 12)\
o '

then the radial stress component on the boundary can be found as

a" = ±a11 sin 1:1.. (6.8)

It characterizes the piecewise constant function and agrees with the optimality criterion
formulated in the previous sections. Matching (6.6) and (6.8), we see that we need A2 = ].

]n this case the singularity in (6.6) disappears. Observe that by decreasing the angle et from
O.75n (corner opening 90) to:l.* 0.715n (corner opening ]02.6), we obtain that the
second eigenvalue indeed approaches one (see Karp and Karal, ]962). The precise value of
this angle can be found as the solution of the foIlowing transcendental equation:
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tan 2:)(* = 2a*.

4409

(6.9)

For :J. :( a* and a skew-symmetric loading there is no singularity ncar the vertex of the
corner, the singularity in radial stress component in (6.6) vanishes. For a skew-symmetric
loading the opening 2(n - x*) = 102.6" is the critical one (Sternberg and Koiter, 1958).

Thus, we have shown that the singularity in stress is absent near the optimal cavity
contour for the present case of external shear loading.
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APPENDIX

In the text below we discuss two issues: existence of a solution and the numerical optimization algorithm
(see Sections 2 and 3 of the main text). For more detailed analyses we refer to Sokolowski and Zolesio (1992) and
Numerical Recipes in FORTRAN (1992).

Existence ()j the solution. To prove the existence of the solution the second constant (finite size of the cavity)
is essential. Consider a closure of a bounded domain in N-dimensional space (each point of this domain specifies
a set of coefficients of the conformal mapping). We exclude all unbounded domains from our consideration as
they lead to failure of the second constraint.

Also we exclude the sets of coefficients which lead to self~intersection boundary. Let an N-tuple of coefficients
of the conformal mapping provide the boundary with self-intersections. Then so will N-tuples in the sufficiently
small neighbourhood of the original point. Thus the region in iV-dimensional space describing the boundaries
with self-intersection is open. Hence its complement is closed.

According to the Weierstrass theorem such a function has both maximum and minimum (taking into account
the condition bW < 0 which is true for all increments associated with the cavities).

Downhill simplex method. For reader convenience we discuss below the general idea of the downhill simplex
method, the optimization method, which was used in our work. For more detailed analyses we refer to Numerical
Recipes in FORTRAN (1992) and the list of references mentioned there.

The downhill simplex method req uires the values of the function only, and it does not req uire the derivatives.
It simplifies the procedure; it works effectively even for the case when the function, we minimize, is not specified
in the explicit analytical form. It starts not just with a single point, but with 2N + I points, defining an initial
simplex in 2N-dimensional space. We decide that the initial starting point Po corresponds to a unit circle = 0)
and take the other points to be P" =, Po + i."e" , where e" are 2N unit basis vectors and An are C()~lstants representing
the characteristic length scale along the direction e". They are chosen by using the value L'v/n (the upper bound
for the modulus of the coefficient c,,) as the characteristic length scale.

The basic idea of the downhill simplex method is to compare the values of the function at the 2N + 1 vertices
of the initial simplex and move this simplex towards the minimum during the iterative process. On each step we
evaluate the function at all vertices of the simplex and ehoose the maximal one P"" Then wc archive the "reflection"
of the point P,,, with maximal value of the function via the simplex boundary. It means that we de11ne a new
position P, of the point Pm in such a way that

where P * = (li2N) L,;~·i.,',,,,,, P" is the centroid ofal! points with the exception ofP", and 1. is the reflection coefficient
which is the ratio of distance between P, and p. and the distance between Pm and p •.

The reflected point P, will be on the line joining P'" and p. on the opposite side of P *. Repetitive application
of the reflection process leads to a step-by-step approaching in the direction of the minimum.

In the particular situation when f(PJ > ((P,,) for all n except n = m, the simplex is contracted along the
direction P,- Pm to P*. Alternatively, if the reflection produces P,. such thatf(P,) <.f(P,,), the simplex is expanding,
and we attempt to find a local minimum on the line P,--- P,." (the one-dimensional gradient method used in this
particular situation).

After application of the "expansion" or "contraction" of the simplex we go back to the reflection procedure.
The following convergence criterion is used with the simplex method

where E is a small positive parameter. In this work we used the Numerical Recipes routine "amoeba" (Numerical
Recipes in FORTRAN 1992) in realizing the downhill simplex method.


